Journal of Organometallic Chemistry, 157 (1978) C23--C26 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary Communication

REARRANGEMENT OF σ -ARYL-THIOCARBONYL COMPLEXES TO dihapto-THIOACYL COMPLEXES. STRUCTURE OF $Os[n^2-C(S)R](n^1-O_2CCF_3)(CO)(PPh_3)_2$

G.R. CLARK, T.J. COLLINS, K. MARSDEN and W.R. ROPER * Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received July 7th, 1978)

SUMMARY

Octahedral osmium complexes of the type $OsRX(CS)L(PPh_3)_2(R = p-tolyl; X = Cl, Br, I or <math>O_2CCF_3$; L = CO or CNR), which have adjacent R and CS ligands, undergo rearrangement to *dihapto*-thioacyl complexes $Os[n^2-C(S)R]XL(PPh_3)_2$, and the X-ray structure determination of a representative example $Os[n^2-C(S)R](n^1-O_2CCF_3)(CO)(PPh_3)_2$, is reported.

Migratory-insertion reactions involving σ -bound organic groups and either carbonyl or isocyanide ligands are an established feature of organometallic chemistry:

The resulting acyl or iminoacyl ligands are usually *monohapto*- (the rearrangement being accompanied by uptake of an additional ligand), but several examples of *dihapto*-arrangements for both acyl (ref. 1-3) and iminoacyl (ref. 4-6) have recently been reported. For the thiocarbonyl ligand no corresponding insertion reaction has been reported, nor have any suitable σ -alkyl or σ -aryl thiocarbonyl precursors been described. We have prepared several compounds of the type OsRX(CS)L(PPh₃)₂ and observed rearrangement to complexes containing thioacyl ligands for which a *dihapto*-arrangement has been verified by X-ray structure determination.

The *p*-tolyl ligand was introduced into a thiocarbonyl complex using di-*p*-tolyl mercury (ref. 3). OsHCl(CS)(PPh₃)₃ (ref. 7) reacts with HgR_2 in tolucne

under reflux to deposit Hq and afford a deep crimson solution from which crimson crystals of OsRCl(CS) (PPh,), can be isolated (ca. 90%). The highly-coloured solution of this five co-ordinate complex lightens rapidly on addition of CO, CNR. or the potentially bidentate anion trifluoroacetate, forming respectively colourless OsRCl(CS)(CO)(PPh3)2, OsRCl(CS)(CNR)(PPh3)2 or yellow OSR(n²-O₂CCF₂)(CS)(PPh₂)₂. The last compound reacts with CO forming colourless OsR(n¹-O₂CCF₂)(CS)(CO)(PPh₂)₂ (see scheme). Solutions of these complexes, OSRX(CS)L(PPh2), in CH2Cl2, C6H6 or C7H8 turn red at rates varying from minutes at room temperature to hours at reflux depending upon X and L. The red products have elemental analyses identical to those of the colourless precursors and are formulated as dihapto-thioacyl complexes. I.R. data (see Table) are consistent with this formulation and a complete X-ray structure determination of $Os[n^2-C(S)R](n^1-O_2CCF_3)(CO)(PPh_3)_2$ provides confirmation. Crystals of Os[n²-C(S)R]Cl(CO)(PPh₃), and Os[n²-C(S)R]Br(CO)(PPh₃), proved unsatisfactory for X-ray analysis, but suitable crystals of the trifluoroacetate were eventually obtained.

The burgundy-coloured crystals are orthorhombic, a = 11.584(1), b = 19.184(2), c = 18.900(2) Å Z = 4, space group $P2_12_12_1^2$. The structure has been deduced from 2880 observed reflections [I > 3 $\sigma(I)$] collected on a Hilger-Watts 4-circle diffractometer with copper Ka radiation. At the present stage of refinement with only the Os, S and P atoms assigned anisotropic thermal parameters, R is 0.073.

The geometry of the monomeric complex is depicted in the figure. The Os atom is bonded in an approximately trigonal bipyramidal arrangement to two triphenylphosphine ligands, one CO, a *monohapto*-trifluoroacetate, and a *dihapto*-thioacyl.

Figure. Geometry of $Os[\eta^2 - C(S)R](\eta^1 - O_2CCF_3)(CO)(PPh_3)_2$

C24

The plane defined by Os,C(4),S is tilted 5.6° to that defined by Os,C(1),O(2). The Os-P and Os-CO bond lengths of 2.412, 2.416(2), 1.86(2) Å are normal. The Os-O(2) bond is 2.22(2) Å.

The *dihapto*-thioacyl is characterised by distances Os-S 2.510(8), Os-C(4) 1.97(4), C(4)-S 1.76(4), C(4)-C(5) 1.48(4) Å and angles S-Os-C(4)44.2(11) Os-S-C(4) 51.4(12) Os-C(4)-S 84.5(3)° Os-C(4)-C(5) 149.1(8)° S-C(4)-C(5) 124.7(10)°. There are few other structures with which these can be directly compared, but we can note that the Os-C distance is shorter than values observed for Os-C bonds of bond order 1 (ref. 8) which range from 2.06 to 2.16 Å, the Os-S distance is long compared with values of 2.426, 2.442(4) Å for the methylated disulphide ligand in $[Os(n^2S_2Me)(CO)_2(PPh_3)_2]ClO_4$ (ref. 9) and the C(4)-S bond is quite long although the standard deviations are such as to preclude definitive statements at this time.

Scheme

In an effort to convert the η^2 -C(S)R ligand to an η^1 -C(S)R ligand Os[η^2 -C(S)R]Cl(CO)(PPh₃)₂ was reacted with the powerful chelating ligand diethyldithiocarbamate. The surprising result was the retention of the *dihapto*thioacyl and displacement of a phosphine ligand to give Os[η^2 -C(S)R](η^2 -S₂CNEt₂)-(CO)(PPh₃). The sulphur atom of the thioacyl is slowly alkylated by methyl triflate providing a route to various thiocarbene complexes, a typical example of which is OsCl₂[C(SMe)R](CNR)(PPh₃)₂.

Compound	Colour	vcs	νсο	VCN	Other I.R. bands
OsRC1 (CS) (PPh ₃) 2	red	1290			
OsPC1(CS) (CO) (PPh3)	colourless	1300	2055		
OsRC1 (CS) (CNR) (PPh3)	colourless	1290		2142	
$O_{SR}(n^2 - O_{CCF})(CS)(PPh_3)_{2}$	yellow	1290			1603(n ² -0 ₂ CCF ₂)
$OSR(\eta^1 - O_2CCF_3)$ (CS) (CO) (PPh ₃)	colourless	1300	2035		1690 (η ¹ -0, ccF,)
$Os[\eta^2-C(S)R]Cl(CO)(PPh_3)_2$	red		1902		2 3
$Os[n^2-C(S)R]Cl(CNR)(PPh_3)_2$	red			1940 ^C	
$Os[n^2-C(S)R](n^1-O_2CCF_3)(CO)(PPh$	3) red		1910		1691(n ¹ -0 ₂ CCF ₂)
$Os[\eta^2 - C(S)R](\eta^2 - S_2CNEt_2)(CO)(PP$	h ₃) red		1893		2, 2
$OSC1_2[C(SMe)R](CNR)(PPh_3)_2$	red			2095, 2060	

a cm⁻¹, measured as nujol mulls.

^b All compounds have satisfactory elemental analyses and ¹H NMR data consistent with the formulations given.

^C very broad band.

REFERENCES

- 1 G. Fachinetti, C. Floriani, F. Marchetti, and S. Merlino, J.Chem.Soc.Chem. Commun., (1976) 522.
- 2 F. Calderazzo, Angew.Chem.Internat.Edn., 16(1977)299.
- 3 W.R. Roper and L.J. Wright, J.Organometal.Chem., 142(1977)Cl.
- 4 R.D. Adams and D.F. Chodosh, J.Organometal.Chem., 122(1976)C11.
- 5 R.D. Adams and D.F. Chodosh, J.Amer.Chem.Soc., 99(1977)6544.
- 6 W.R. Roper, G.E. Taylor, J.M. Waters and L.J. Wright, J.Organometal.Chem., submitted for publication.
- 7 T.J. Collins and W.R. Roper, J.Organometal.Chem., 139(1977)C56.
- 8 J.M. Waters and J.A. Ibers, Inorg.Chem., 16(1977)3273 and references quoted therein.
- 9 G.R. Clark, W.R. Roper, D.R. Russell and A. Walker, J.Organometal.Chem., 136(1977)Cl.

TABLE I.R. Data^a for osmium thiocarbonyl derivatives